
... 

\ 
I 

.~ A FEW BUGS I HAVE FOUND by Mike Robinson 
SOLIDISK'S STLDISC PROGRAM 

I'v e found rather a strange bug with the STLDISC program. I've 
been using it with a 32k SOLIDISK unit and thoug h the size of the 
silicon disc is limited, I've found STLDISC very useful. However, 
one day a program I was developing kept crashing for no apparent 
reason and it took me ages to track down the source o~ the tro~ble: 

In the end I found that a crash will occur if the drive is 
changed after doing a disc operation using STLDISC when the length 
of a program has the last two hexadecimal digits as 13, e.g . &13, 
&1Al3, &2013, etc. 

The problem can , be recreated as follows:-
With STLDISC loaded enter the f dllowing one line p r ogram: 

l0REM STLDISC BUG 
Check that the length of the program is exactly &13 (with PRINT 
~TOP-PAGE). SAVE this to either proper disc or silicon disc. Then 
change drive! 

Why this causes a crash I don't know. I wrote to Solidisk in 
March about this problem but have not had a reply. 

EXTENDING A FILE WITH WATFORD 1.3 DFS 
This problem occurs when I have OPENUPed (with Basic II) a file 

for reading and writing and use BPUT to write additional data to the 
end of an existing file. This works fine and the file will be 
extended to include the new bytes, providing BGET is not used on 
another part of the file before CLOSEing it. The extra bytes will 
not be on the end when you next re-open the file. 

I'm surprised I've not seen any reference to this problem in any 
of the computer press as I would have thought it was a fairly common 

·situation. I have per ~ona~ly come up a~ainst it on three programs 
invo lving :i::;an-dpm ·\ clpces S, f.. i -le s:· vthich I 've :wr,itten r e cently. 
Incidently the pr ciblem1 does ._ not occur with the Acorn DFS. 

I wrote to Watford Electronics about this and they replied to say 
my letter had been passed to the author of the DFS to check that it 
had been fixed. Some work had been done to the text filing system 
and they believe that the problem had been corrected. Other 
improvements of the latest version are full tube compatibility and a 
slightly faster disk format. ~here would be a ~5 charge to upgrade 
to the new version. 

BASIC'S 'PRINT' FORMAT 
The use of a semi-colon after the PRINT statement is pretty 

elementary. If a semi-colon is used before any numeric values, they 
will be printed at the cursor position without any leading spaces. 
But if no semi-colon is used, numbers will be 'formatted' to the 
right ~ide of the current field width. This will be 10 spaces unless 

' the@% variable has been altered (see User Guide). 
e.g. PRINT 123 will produce: . 

123 (with seven leading spac~s 
whilst PRINT; 123 w:i..11 produ <t'e: . 

123 (no leading spaces) 
Now the problem I have found is if you want numbers formatted 

both ways in the same PRINT statement. As soon as the semi-colon has 
been used, all following numbers will be treated as if the 
semi-colon has been used even without it. So the statement PRINT 
11 A= 11 123 11 B= 11 ;456 11 C_= 11 789 will produce: 
A= 123 B=456 C=789 

and not as you would expect: 
A= 123 B=456 C= 789 



{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

